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Superposition, Entropy and Schmidt
Decomposition of States

Antonio Zecca

Superposition and entropy are compared using the language of the logic of quantum
mechanics. It is pointed out that a finite value of the relative quantum entropy of states
implies a superposition relation between the states themselves. The superposition re-
lation is then studied by comparing the pure state of the compound system with the
product of the reduced states and an intermediate “Schmidt” state. All the correspond-
ing relative quantum entropies are evaluated in terms of the Schmidt coefficients of the
global pure state. Some of the results are extended in case the compound system is in a
state represented by a general density operator.
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1. INTRODUCTION

Entropy considerations for quantum systems had been made possible by en-
larging the notion of state to include density operators. These states, introduced
by von Neumann in 1920s (e.g. von Neumann, 1955) are the quantum counterpart
of the classical statistical mixtures of states. The quantum entropy and the relative
entropy functions have been widely studied in the literature having applications
in many fields of physics. Mathematical aspects have been put into evidence in
the particular case of compound system where the entropy of the system and
the entropies of the subsystems are related by important well-known inequalities.
(For a review on the argument see Wehrl (1948) and Ruskai (2002); see also Fan
(2003).) On account of the fact that the classical entropy, originally introduced
by Shannon (1948), has an expression similar to the quantum one, the role of
entropy has been recently reconsidered. The downfall of the general results on
the entropy functions intersects now with many fields of research such as quan-
tum information and quantum computing (Nielsen and Chuang, 2000), quantum
communication (Colin, 1999; Janzing and Beth, 2003); quantum teleportation

1 Dipartimento di Fisica dell’ Universita’ and INFN, Via Celoria 16, I-20133 Milano, Italy
2 GNFM, Milano, Italy; e-mail: Zecca@mi.infn.it

1849

0020-7748/04/0900-1849/0 C© 2004 Springer Science+Business Media, Inc.



1850 Zecca

(Bennet et al., 1985; Bowen and Bose, 2001; Ban, 2003) and also classical in-
formations and black holes (Hosoya and Carlini, 2002). In all these fields an
important role is played by the notion of entanglement and Schmidt decomposi-
tion of states (e.g. Peres, 1995). Owing to the fact that the superposition relation
can as well be formulated for the density operators (Varadarajan, 1968; Zecca,
1980), it seems natural to study the mutual dependence of entropy and superpo-
sition in situations possibly involving entangled states. That problem is discussed
here in the language of the logic approach to quantum mechanics. Accordingly,
some properties of superposition under tensor product and partial trace operations
are primarily discussed. It is pointed out that finite values of the quantum relative
entropy is meaningful only for states that are in an explicit superposition rela-
tion. The study is first developed in case the compound system is in a pure state.
The reduced states, their product state and an intermediate “Schmidt-like” state
between them are compared both for what concerns superposition as well as for
the evaluation of their relative entropies. All the results are expressed in terms
of the Schmidt coefficients of the global pure state. The method is then general-
ized in an elementary way to the case of a generic initial state of the compound
system.

2. SUPERPOSITION AND ENTROPY IN STANDARD LOGIC:
DEFINITIONS AND PRELIMINARY RESULTS

The language of the standard logic approach to quantum mechanics is useful
for the present treatment. (The approach had its origin from a paper of Birkhoff and
von Neumann (1936); for further developments see Jauch (1968); Piron (1970);
Beltrametti and Cassinelli (1981).) Accordingly, to the physical system there is an
associated pair L , S. The logic L ≡ L(H ) is the complete orthomodular atomic
lattice of the closed subspaces (propositions) of a separable complex Hilbert space
H of dimension ≥3. (The operations in L(H ) are such that ∨αaα , aα ∈ L(H )
denotes the closed subspace generated by the subspaces aα of H , while ∧αaα ≡
∩αaα .) The set of the states S is the set of the σ -additive probability measures
on L(H ). The probability of the outcome yes for a test of proposition a when the
system has been prepared according to the procedures of the state s is denoted
by s(a). By Gleason’s theorem (Gleason, 1957) there is an affine isomorphism
between S and the set K (H ) of the positive trace class operators of H of trace 1
(density or statistical operators). Therefore, for every s there is one and only one
ρ ∈ K (H ) so that

s(a) ≡ ρ(a) = Trρ Pa , (a ∈ L(H )) (1)

where Pa is the orthogonal projection in H of range a. In case a is one dimensional
we write a ≡ [ψ], Pa = Pψ , ψ being a unit vector of a.
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Definition 2.1. A state ρ is said to be superposition of the states of D ⊂ K (H )
if anyone of the following equivalent conditions hold:

a ∈ L(H ), σ (a) = 0 ∀ σ ∈ D ⇒ ρ(a) = 0 (2)

b ∈ L(H ), σ (b) = 1 ∀ σ ∈ D ⇒ ρ(b) = 1 (3)

Formulations (2) and (3) are indeed equivalent as it is easily seen. Definition (2)
was proposed by Varadarajan (1968) for a general quantum logic. Its application
to the standard logic has been studied in Zecca (1980). It is useful to recall that
anyone of the equivalent conditions (2) and (3) is in turn equivalent to the condition

[ρ] ≤
∨
σ∈D

[σ ] (4)

where [ρ] denotes the range of ρ as an operator in H , as it can be shown by consid-
ering the spectral decomposition of the density operators (Gorini and Zecca, 1975;
Zecca, 1980). The definition includes the pure superposition of pure states ψ =
αψ1 + βψ2, (|α|2 + |β|2 = 1) for which obviously [ψ] ≤ [ψ1] ∨ [ψ2] as well as
the statistical mixtures of states ρ = ∑

i αiρi for which [ρ] = ∨i [ρi ]. (In case
of the normal states of a W � algebra the relation can be expressed by supp ρ ≤∨

σ∈D supp σ (Zecca, 1981).)
In dealing with physical system of Hilbert space H that is compound of two

subsystems with Hilbert spaces H1 and H2 one generally assumes H = H1 ⊗ H2.
It is then possible to obtain reduced states, starting from a state of the compound
system, by taking partial traces. If {u1h} and {v2h} are complete ortho-normal
systems in H1 and H2, respectively, and ρ ∈ K (H ) we denote ρ1 = Tr2ρ = ∑

h <
v2h |ρ|v2h〉, ρ2 = Tr1ρ = ∑

k〈u1k |ρ|u1k〉 as the reduced states. It is a fact that the
superposition relation is invariant both under tensor product as well as under
partial trace operations (Zecca, 2003). This means, by using result (4), that if ρ ∈
K (H ), ρα ∈ K (H1) and σ ∈ K (H2), σα ∈ K (H2), then the following conditions
hold:

[ρ] ≤
∨
α

[ρα], [σ ] ≤
∨
β

[σβ] ⇐⇒ [ρ ⊗ σ ] ≤
∨
α,β

[ρα ⊗ σβ] (5)

[ρ] ≤
∨
α

[ρα] =⇒ [ρ1] ≤
∨
α

[
ρα

1

]
and [ρ2] ≤

∨
α

[
ρα

2

]
. (6)

The object is now of briefly pointing out some aspects of the definition of the
entropy functions from the point of view of the superposition relation.

Definition 2.2. The quantum entropy of the state ρ ∈ K (H ) and the relative
quantum entropy of the states ρ , σ are given by S(ρ) = −Trρ log ρ, and S(ρ|σ ) =
−Trρ(log ρ − log σ ), respectively.
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By considering the spectral decomposition ρ = ∑
i ρi Pψi (e.g. Schatten,

1960) one has immediately that S(ρ) = − ∑
ρi log ρi ≥ 0 and equality holds if

and only if ρ is a pure state Pψ . Also S(ρ|σ ) ≥ 0 (with equality holding if and
only if ρ = σ ) as a consequence of Klein’s inequality. (A list of properties and
inequalities to which the entropy functions satisfy as well as their mutual inter-
dependence are widely considered in the review by Ruskai (2002); see also Fan
(2003).) Here we are interested only in some remarks on the definitions and, in the
next section, in the study of some elementary situations.

Consider then the states ρ , σ ∈ K (H ), the spectral decomposition σ =∑
i σi Pφi and the complete ortho-normal set of states {φ̃l} = {φh} ∪ {φ′

l} ∪ {φ′′
j }

in H where {φh} ∪ {φ′
l} generates [σ ] ∨ [ρ]. (The set {φ′

l} is possibly empty.) Then
the relative entropy takes the form

S(ρ|σ ) = −S(ρ) −
∑

l

log σl〈φl |ρ|φl〉 −
∑

i

〈φ′
i |ρ log σ |φ′

i 〉 (7)

If {φ′
i } is non empty, σ |φ′

i 〉 = 0|φ′
i 〉 so that S(ρ|σ ) = ∞. Therefore, if S(ρ) < ∞,

S(ρ|σ ) takes finite values if and only if [ρ] ≤ [σ ], that is if and only if ρ is
superposition of σ . (Alternatively, if and only if [ρ]⊥ ≥ [σ ]⊥ or ker ρ ≥ ker σ

(e.g. Ruskai, 2002) or, in the language of the normal states of a W � algebra, if and
only if supp ρ ≤ supp σ (e.g. Zecca, 1981).)

As an application, consider two states such that [ρ] = [σ ], with dim [ρ] =
N < ∞, whose spectral decompositions are of the form ρ = ∑N

i=1 ρi Pφi , γ =∑N
i=1 γi Pφi with ρi , γi > 0,

∑N
i=1 ρi = ∑N

i=1 γi = 1. Since ρ , γ are superposi-
tion of each other, both S(ρ|γ ) ≥ 0 and S(γ |ρ) ≥ 0 or

N∑
i=1

γi log
γi

ρi
≥ 0,

N∑
i=1

ρi log
ρi

γi
≥ 0. (8)

By choosing γi = 1/N , i = 1, 2, . . . , N one gets

−
N∑

i=1

ρi log ρi ≤ log N ,
N∏

i=1

ρi ≤ 1

N N
. (9)

Therefore, as is well known, S(ρ) takes its maximum for ρi = 1/N for every i .
Relation (9) can be extended to hold for N → ∞ in which case, since ρi → 0, it
must be

∏N
i ρi = 0.

3. PARTICULAR SITUATIONS

Some considerations can be developed in case the compound system is in a
pure state. Many results can then be expressed entirely in terms of the Schmidt co-
efficients. Suppose indeed φ ∈ H1 ⊗ H2 and consider its Schmidt decomposition
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(Schmidt, 1906)

φ =
∑

i

gi |u1i ⊗ v1i > (gi > 0) (10)

where 〈u1i |u1k〉1 = δik , 〈v2 j |v2l〉2 = δ jl ,
∑

i g2
i = 1. One can derive the one-

dimensional projection Pφ = |φ〉〈φ|, the reduced states Pφ

1 , Pφ

2 and the product
state Pφ

1 ⊗ Pφ

2 . Explicitly (compare with Ekert and Knight, 1995) one obtains:

Pφ =
∑

ik

gi gk |u1i 〉〈u1k | ⊗ |v2i 〉〈v2k | (11)

Pφ

1 =
∑

i

g2
i |u1i 〉〈u1i | (12)

Pφ

2 =
∑

k

g2
k |v2k〉〈v2k | (13)

Pφ

1 ⊗ Pφ

2 =
∑

ik

g2
k g2

i |u1i 〉〈u1i | ⊗ |v2k〉〈u2k | (14)

One can also consider the “Schmidt-like” state

ρφ( f ) =
∑

i

fi |u1i 〉〈u1i | ⊗ |v2i 〉〈u2i | (15)

(for any countable set of positive numbers fi with
∑

i fi = 1) whose expression
coincides, as it happens also for Pφ

1 , Pφ

2 , with its own spectral decomposition.

Proposition 3.1. The state Pφ is superposition of the state ρφ( f ) that in turn is
superposition of the state Pφ

1 ⊗ Pφ

2 .

Proof: Denote by {ũα} ({ṽβ}) a complete system of vectors in H1 (H2) that con-
tains {u1i } ({v2k}). Suppose Tr Paρφ( f ) = 0 and use {ũα ⊗ ṽβ} to calculate the
trace toghether with expression (15). This finally leads to Pa|u1k ⊗ v2k〉 = 0 for
every k. On the other hand one obtains TrPa Pφ = ∑

ik gi gk 〈u1k ⊗ v2k |Pa|u1i ⊗
v2i 〉 that vanishes by the last result. This proves [Pφ] ≤ [ρφ( f )]. The proof of
[ρφ( f )] ≤ [Pφ

1 ⊗ Pφ

2 ] is immediate from the very definition of the states. �

It can be checked that ρφ( f ) in (15) is not only a disentangled state in the
sense of Rudolph (2001), but also it is operator Schmidt decomposed in the sense
of Tyson (2003a,b). According to Proposition 1 and result (4), ρφ( f ) represents
a refinement of Pφ

1 ⊗ Pφ

2 for what concerns the superposition relation in the sense
that

[Pφ] ≤ [ρφ( f )] ≤ [
Pφ

1 ⊗ Pφ

2

]
. (16)
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Relation (16) enables, according to the previous remarks, the calculation of the rel-
ative quantum entropies in term of the Schmidt coefficients of φ. By remarking that

ρφ( f )|u1α ⊗ v2β〉 = δαβ fα|u1α ⊗ v2β〉 (17)

Pφ|u1α ⊗ v2β〉 = δαβ

∑
i

gi gα|u1i ⊗ v2i 〉 (18)

Pφ

1 ⊗ Pφ

2 |u1α ⊗ v2β〉 = g2
αg2

β |u1α ⊗ v2β〉 (19)

the following expressions can be easily obtained:

S(Pφ|ρφ( f )) = −Tr Pφ log ρφ( f ) = −
∑

k

g2
k log fk (20)

S
(
ρφ( f )|Pφ

1 ⊗ Pφ

2

) =
∑

k

fk log
(

fk/g4
k

)
(21)

S
(
Pφ|Pφ

1 ⊗ Pφ

2

) = −
∑

l

g2
l log g4

l (22)

Therefore, by choosing fk = g2
k for every k, one has also

−
∑

i

g2
i log g2

i = S
(
Pφ

1

) = S
(
Pφ

2

) = S(Pφ|ρφ( f )) = S
(
ρφ( f )|Pφ

1 ⊗ Pφ

2

)

= 1

2
S
(
Pφ|Pφ

1 ⊗ Pφ

2

)
(23)

Some of the previous considerations can be extended in case the global system is
in a state represented by a density operator.

Proposition 3.2. Let ρ ∈ K (H1 ⊗ H2) with spectral decomposition ρ = ∑
i

ρi Pψi and reduced states ρ1 = ∑
j ρ j P

ψ j

1 , ρ2 = ∑
k ρk Pψk

2 and define ρ( f ) =∑
j f j P

ψ j

1 ⊗ P
ψ j

2 for every set of positive numbers f j such that
∑

j f j = 1. Then
ρ is superposition of ρ( f ) which in turn is superposition of ρ1 ⊗ ρ2.

Proof: By assumption and by applying result (6) one has [ρ1] = ∨
i [Pψi

1 ] and
similarly for ρ2. The previous result (16) gives now [Pψi ] ≤ [Pψi

1 ] ⊗ [Pψi

2 ] =
[Pψi

1 ⊗ Pψi

2 ] for every i (compare with Zecca, 1994). Therefore

∨
i

[Pψi ] ≤
∨

i

[
Pψi

1

] ⊗ [
Pψi

2

] ≤
(∨

i

[
Pψi

1

]) ⊗
(∨

k

[
Pψk

2

])

and there follows [ρ] ≤ [ρ( f )] ≤ [ρ1] ⊗ [ρ2] = [ρ1 ⊗ ρ2]. �

It must be noted here that the expression of ρ( f ) has a separable (disen-
tangled) form in the sense of Rudolph (2001), but it has not an operator-Schmidt
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decomposition in the sense of Tyson (2003a,b), because in general, Tr Pψi

1 Pψk

1 �= 0
for i �= k.
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